

Metals and Grinders A Technology Update

Tom Wirsing (presented to the FRW club May 2017)

Changes in tool steel and grinding wheel technologies are changing our choices of woodturning tools and grinding wheels

Purpose:

- To discuss recent developments in modern tool steels and high speed steels (HSS)
- To discuss recent developments in grinding wheel technologies
- To discuss implications for modern woodturners
- Grind various steels on various grinders and examine the grinds under 300X microscope
- Analyze the results, draw conclusions

Please ask questions

There have been recent significant changes in both tool steels and grinding wheels. Many woodturners have been confused by these changes.

Evolution of tools

- First tools were wood, bone, antler
- Stone tools, Stone Age
- Bronze (copper and tin), Bronze Age
- Iron, Iron Age
- Steel (iron with carbon)
- High-carbon steel (iron with more carbon to make it harder)
- High speed steel (molybdenum, chromium, tungsten, vanadium, cobalt, etc.). M2 is excellent HSS

Let's examine the current state of the art.

M2 is by far the most widely used high speed steel for modern woodturning tools

Henry Taylor, Hamlet, Robert Sorby, Ashley Iles, etc.

Evolution of Particle Metals: M4 M42 2030 2060 **CPM10V (A11)** CPM15V Etc.

CPM 10V is emerging as the most widely used of the new particle metals

Vicmarc, Thompson, SB Tools, Glaser, etc.

Composition of M2 and CPM10V

<u>M2</u> is the most widely used conventional <u>High Speed Steel</u> for wood-lathe cutters. <u>CPM10V</u> is one of many <u>Particle Metal Steels</u> used in modern wood-lathe cutters. Definitions agreed by American Iron and Steel Institute (AISI).

	M2	CPM10V
Carbon	0.95	2.45
Vanadium	2.00	9.75
Chromium	4.00	5.25
Manganese		0.50
Molybdenum	5.00	1.30
Tungsten	6.00	
Silicon		0.90
Sulfur		0.07
Iron	82.05	79.78

Let's add more!!

If a little bit of additives like molybdenum, chromium, tungsten, vanadium and cobalt makes steel better and more heat resistant, why not add more??

Problem!

Too high a percentage of additives (vanadium, tungsten chromium, molybdenum, etc.) caused the additives to clump together as the molten metal cools, creating very hard inclusions, called <u>carbides</u>.

Some of the alloys clump together forming <u>carbides</u>

Particle metal steel ground on conventional cast wheel

Molten steel forced at high pressure through a nozzle to form millions of microscopic droplets containing even smaller carbides

The particles are then compressed into a solid ingot through the Hot Isostatic Pressure (HIP) process

Conventional grinding wheel with abrasive imbedded in matrix

Particle metal steel ground on conventional cast wheel

Cutting edge of Particle Metal tool Ground on conventional wheel

Cubic Boron Nitride (CBN) grinding wheel with CBN abrasive bonded to steel wheel

Cutting edge of Particle Metal tool ground on CBN wheel

Conventional Grinding Wheel with imbedded abrasive, 300X magnification

Cubic Boron Nitride (CBN) grinding wheel, 300X magnification

Cubic Boron Nitride (CBN) Abrasive Crystal

Cubic Boron Nitride (CBN) molecule with one-to-one ratio of boron and nitrogen atoms

Total Cost of Ownership

- Norton SG 8" grinding wheel costs \$105, lasts approximately 1 year (Seeded Gel is ceramic alumina)
- Typical CBN 8" grinding wheel costs \$185, lasts indefinitely
- Which has a lower total cost of ownership?

Don't use diamond grinding wheels!

- Diamonds are pure carbon. Iron has an affinity for carbon
- When the diamond abrasive becomes hot, carbon transfers to the tool, rapidly wearing down the diamond abrasive
- Carbon transfers from the diamond abrasive to the tool, forming carbides at the cutting edge, damaging the tool.

All tool steels are not created equal!

- Chemistry tolerances
- Refining process tolerances
- Rolling process
- Heat treating process
- Tempering process

Let's examine grinds with 300X Microscope

- M2 ground on conventional wheel
- CPM 10V ground on conventional wheel
- M2 ground on CBN wheel
- CPM 10V ground on CBN wheel

